
University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 1

Lecture 19
Introduction to Pipelining

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1)

Basic pipelining
• basic := single, in-order issue

– single issue
• one instruction at a time (per stage)

– in-order issue
• instructions (start to) execute in order

– next unit: multiple issue
– unit after that: out-of-order issue

• pipelining principles
– tradeoff: clock rate vs. IPC
– hazards: structural, data, control

• vanilla pipeline: single-cycle operations
– structural hazards, RAW hazards, control hazards

• dealing with multi-cycle operations
– more structural hazards, WAW hazards, precise state

2

(A better way)
...

and the next
way will be

better and so
on and so on!

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 3

Example: We have to build x cars...

...Each car takes 6 steps to build...

Build the frame

(~1 hour)

Build the body

(~1.25 hours)

Install interior

(~1.25 hours)

Put on axles, wheels

(~1 hour)

Paint

(~1.5 hours)

Roll out

(~1 hours)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 4

Sequential Car Building...
Build the frame

(~ 1 hour)

Build the body

(~1.25 hours)

Install interior

(~1.25 hours)
Put on axles, wheels

(~1 hour)
Paint

(~1.5 hours)
Roll out (~1 hours)

Total time: 7 Hours.
(~1 hour/stage)Pipelined Car Building...

1 car done ~ every 1.5
hours

(~1 hour/stage)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 5

Pipelining Lessons (laundry example)

• Multiple tasks operating
simultaneously

• Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Also, need time to “fill”
and “drain” the pipeline.

A

B

C

D

6 PM 7 8 9

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 6

Pipelining: Some terms
• If you’re doing laundry or implementing a µP, each

stage where something is done called a pipe stage

– In laundry example, washer, dryer, and folding table
are pipe stages; clothes enter at one end, exit other

– In a µP, instructions enter at one end and have been

executed when they leave

• Throughput is how often stuff comes out of a pipeline

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 7

On the board…
• The “math” behind pipelining…

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 8

More technical detail
• If times for all S stages are equal to T:

– Time for one initiation to complete still ST

– Time between 2 initiates = T not ST

– Initiations per second = 1/T

• Pipelining: Overlap multiple executions of same

sequence

– Improves THROUGHPUT, not the time to perform a
single operation

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 9

More technical detail
• Book’s approach to draw pipeline timing diagrams…

– Time runs left-to-right, in units of stage time

– Each “row” below corresponds to distinct initiation

– Boundary b/t 2 column entries: pipeline register

• (i.e. hamper)

– Look at columns to see what stage is doing what

0 1 2 3 4 5 6

Wash 1 Dry 1 Fold 1 Pack 1

Wash 2 Dry 2 Fold 2 Pack 2

Wash 3 Dry 3 Fold 3 Pack 3

Wash 4 Dry 4 Fold 4 Pack 4

Wash 5 Dry 5 Fold 5

Wash 6 Dry 6

Time for N initiations to complete: NT + (S-1)T
Throughput: Time per initiation = T + (S-1)T/N ! T!

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 10

How much (ideal) speedup?

Latch

combinational

logic

delay = !

combinational

logic

delay = !

combinational

logic

delay = !

combinational

logic

delay = !

Unpipelined

Latch
delay for 1 piece of data = 4! + latch setup (assume small)

approximate delay for 1000 pieces of data = 4000!

Latch

combinational

logic

delay = !

combinational

logic

delay = !

combinational

logic

delay = !

combinational

logic

delay = !

Pipelined

Latchdelay for 1 piece of data = 4(! + latch setup)
approximate delay for 1000 pieces of data = 3! +
1000!

Ideal speedup = # of pipeline stages

speedup for 1000 pieces of data = 4000
= ~ 41003

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 11

The “new look” dataflow

P
C

Inst.
Memory

4
ADD

Register
File

Sign
Extend

16 32

M
u
x

M
u
x

Comp.

ALU

Branch
taken

M
u
x

Data
Mem.

IR6...10

IR11..15

MEM/

WB.IR

M
u
x

IF/ID ID/EX EX/MEM MEM/WB

Data must be
stored from one
stage to the next
in pipeline
registers/latches.
hold temporary
values between
clocks and needed
info. for
execution.

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 12

Another way to look at it…

Inst. # 1 2 3 4 5 6 7 8

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 IF ID EX MEM WB

Clock Number

A
L

U

RegIM DM Reg

A
L

U

RegIM DM Reg

A
L

U

RegIM DM Reg

A
L

U

RegIM DM Reg

Pr
og

ra
m
 e

x
ec

ut
io
n

or
d
er

 (
in
 i
ns

tr
uc

ti
on

s)
Time

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 13

So, what about the details?
• In each cycle, new instruction fetched and begins 5

cycle execution

• In perfect world (pipeline) performance improved 5

times over!

• Now, let’s talk about overhead…

– (i.e. what else do we have to worry about?)

• Must know what’s going on in every cycle of machine

• What if 2 instructions need same resource at same time?

– (LOTS more on this later)

– Separate instruction/data memories, multiple register ports, etc.

help avoid this

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 14

Limits, limits, limits…
• So, now that the ideal stuff is out of the way, let’s

look at how a pipeline REALLY works…

• Pipelines are slowed b/c of:

– Pipeline latency

– Imbalance of pipeline stages

• (Think: A chain is only as strong as its weakest link)

• Well, a pipeline is only as fast as its slowest stage

– Pipeline overhead (from where?)

• Register delay from pipe stage latches

• Clock skew:

– Once a clock cycle is as small as the sum of the clock skew and

latch overhead, you can’t get any work done…

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 15

Let’s look at some examples:
• Specifically:

– (1 instruction sequence -- with a problem)

– (2 instruction sequence)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 16

Executing Instructions in Pipelined Datapath
• Following charts describe 3 scenarios:

– Processing of load word (lw) instruction

• Bug included in design (make SURE you understand the bug)

– Processing of lw

• Bug corrected (make SURE you understand the fix)

– Processing of lw followed in pipeline by sub

• (Sets the stage for discussion of HAZARDS and inter-
instruction dependencies)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 17

Load word: Cycle 1

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 18

Load Word: Cycle 2

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 19

Load Word: Cycle 3

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 20

Load Word: Cycle 4

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 21

Load Word: Cycle 5

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 22

Load Word: Fixed Bug

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 23

A 2 instruction sequence

• Examine multiple-cycle & single-cycle diagrams for a

sequence of 2 independent instructions

– (i.e. no common registers b/t them)

• lw $10, 9($1)

• sub $11, $2, $3

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 24

Single-cycle diagrams: cycle 1

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 25

Single-cycle diagrams: cycle 2

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 26

Single-cycle diagrams: cycle 3

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 27

Single-cycle diagrams: cycle 4

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 28

Single-cycle diagrams: cycle 5

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 29

Single-cycle diagrams: cycle 6

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 30

What about control signals?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 31

Questions about control signals
• Following discussion relevant to a single instruction

• Q: Are all control signals active at the same time?

• A: ?

• Q: Can we generate all these signals at the same

time?

• A: ?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 32

Passing control w/pipe registers
• Analogy: send instruction with car on assembly line

– “Install Corinthian leather interior on car 6 @ stage 3”

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 33

Pipelined datapath w/control signals

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 34

Hazards

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 35

On the board…
• Let’s look at hazards…

– …and how they (generally) impact performance.

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 36

The hazards of pipelining
• Pipeline hazards prevent next instruction from

executing during designated clock cycle

• There are 3 classes of hazards:

– Structural Hazards:

• Arise from resource conflicts

• HW cannot support all possible combinations of instructions

– Data Hazards:

• Occur when given instruction depends on data from an
instruction ahead of it in pipeline

– Control Hazards:

• Result from branch, other instructions that change flow of
program (i.e. change PC)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 37

How do we deal with hazards?
• Often, pipeline must be stalled

• Stalling pipeline usually lets some instruction(s) in

pipeline proceed, another/others wait for data,

resource, etc.

• A note on terminology:

– If we say an instruction was “issued later than
instruction x”, we mean that it was issued after
instruction x and is not as far along in the pipeline

– If we say an instruction was “issued earlier than
instruction x”, we mean that it was issued before
instruction x and is further along in the pipeline

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 38

Stalls and performance
• Stalls impede progress of a pipeline and result in

deviation from 1 instruction executing/clock cycle

• Pipelining can be viewed to:

– Decrease CPI or clock cycle time for instruction

– Let’s see what affect stalls have on CPI…

• CPI pipelined =

– Ideal CPI + Pipeline stall cycles per instruction

– 1 + Pipeline stall cycles per instruction

• Ignoring overhead and assuming stages are balanced:

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 39

Even more pipeline performance issues!
• This results in:

• Which leads to:

• If no stalls, speedup equal to # of pipeline stages in

ideal case

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 40

Structural hazards
• 1 way to avoid structural hazards is to duplicate

resources

– i.e.: An ALU to perform an arithmetic operation and
an adder to increment PC

• If not all possible combinations of instructions can be

executed, structural hazards occur

• Most common instances of structural hazards:

– When a functional unit not fully pipelined

– When some resource not duplicated enough

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 41

An example of a structural hazard

A
LURegMem

D
M

Reg

A
LURegMem

D
M

Reg

A
LURegMem

D
M

Reg

A
LURegMem

D
M

Reg

Time

A
LURegMem

D
M

Reg

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

What’s the problem here?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 42

How is it resolved?

Time

A
LURegMem

D
M

Reg

Load

Instruction 1

Instruction 2

Stall

Instruction 3

Bubble Bubble Bubble Bubble Bubble

Pipeline generally stalled by

inserting a “bubble” or NOP

A
LURegMem DM Reg

A
LURegMem DM Reg

A
LURegMem DM Reg

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 43

Or alternatively…

Inst. # 1 2 3 4 5 6 7 8 9 10

LOAD IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 stall IF ID EX MEM WB

Inst. i+4 IF ID EX MEM WB

Inst. i+5 IF ID EX MEM

Inst. i+6 IF ID EX

Clock Number

• LOAD instruction “steals” an instruction fetch cycle

which will cause the pipeline to stall.

• Thus, no instruction completes on clock cycle 8

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 44

On the board…
• Let’s see how structural hazards can impact

performance.

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 45

A simple example
• The facts:

– Data references constitute 40% of an instruction mix

– Ideal CPI of the pipelined machine is 1

– A machine with a structural hazard has a clock rate
that’s 1.05 times higher than a machine without the
hazard.

• How much does this LOAD problem hurt us?

• Recall: Avg. Inst. Time = CPI x Clock Cycle Time

– = (1 + 0.4 x 1) x (Clock cycle timeideal/1.05)

– = 1.3 x Clock cycle timeideal

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 46

Remember the common case!
• All things being equal, a machine without structural

hazards will always have a lower CPI.

• But, in some cases it may be better to allow them

than to eliminate them.

• These are situations a computer architect might have

to consider:

– Is pipelining functional units or duplicating them costly
in terms of HW?

– Does structural hazard occur often?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 47

What’s the realistic solution?
• Answer: Add more hardware.

– As we’ll see, CPI degrades quickly from our ideal ‘1’
for even the simplest of cases…

