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Lecture 19
Introduction to Pipelining

University of Notre Dame, Department of Computer Science & Engineering

Example: We have to build x cars...
...Each car takes 6 steps to build...

Build the frame Build the body Install interior
(~1 hour) (~1.25 hours) (~1.25 hours)

B

Put on axles, wheels Roll out
(~1 hour) (~1 hours)
R e

e Y
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Basic pipelining
* basic := single, in-order issue
- single issue
- one instruction at a time (per stage)

- in-order issue
- instructions (start to) execute in order

- next unit: multiple issue
- unit after that: out-of-order issue
- pipelining principles
- tradeoff: clock rate vs. IPC
- hazards: structural, data, control
- vanilla pipeline: single-cycle operations
- structural hazards, RAW hazards, control hazards
- dealing with multi-cycle operations
- more structural hazards, WAW hazards, precise state

(A better way)

and the next
way will be

better and so
on and so on!
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Sequential Car Building...

Build the frame Build the body Install interior Put on axles, wheels Paint
(~ 1 hour) (~1.25 hours) (~1.25 hours) (~1 hour) (~15 hours) Roll out (~1 hours)
—

7 Hours.
Pipelined Car Building... (-1 hour/stage)
i I (e —

SO T
m 4
s lN\e

Total time:

1 car done ~ every 1.5

hours
(~1 hour/stage)
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Pipelining Lessons (laundry example)

* Multiple tasks operating

imultaneously
6 PM simu
\ 7 8 J * Pipelining doesn't help

Time latency of single task, it

| | | | || helps throughput of
entire workload

* Pipeline rate limited by
slowest pipeline stage

~un o o

EIIE’I . * Potential speedup =
@ . E 7 Number pipe stages
* Unbalanced lengths of

pipe stages reduces
speedup

S 0 a0

+ Also, need time to “fill”
and “drain” the pipeline.
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On the board...

+ The "math” behind pipelining...
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Pipelining: Some terms

+ If you're doing laundry or implementing a uP, each
stage where something is done called a

- In laundry example, washer, dryer, and folding table
are pipe stages; clothes enter at one end, exit other

is how often stuff comes out of a pipeline
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More technical detail

- If times for all S stages are equal to T:
- Time for one initiation to complete still ST
- Time between 2 initiates = T not ST
- Initiations per second = 1/T

- Pipelining: Overlap multiple executions of same
sequence

- Improves THROUGHPUT, not the time to perform a
single operation

University of Notre Dame, Department of Computer Science & Engineering
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More technical detail How much (ideal) speedup?
+ Book's approach to draw pipeline timing diagrams... o
Unpipelined
- Time runs left-to-right, in units of stage time
- Each "row” below corr‘esponds to distinct initiation combinational combinational combinational combinational
logic — logic —> logic — logic
- Boundary b/t 2 column entries: pipeline register delay = © delay = v delay = delay =
* (i.e. hamper) Latch delay for 1 piece of data = 4t + latch setup (assume small) Latch

_ . . approximate delay for 1000 pieces of data = 4000t

Look at columns to see what stage is doing what Pielined
0 1 2 3 4 5 6

Wash 1 Dry 1 Fold 1 Pack 1 combinational combinational combinational combinational

Wash 2 Dry 2 Fold 2 Pack 2 logic nd logic > logic logic
Wash 3 bry 3 Fold 3 Pack 3 delay = delay = delay = delay = <
Wash 4 Dry 4 Fold 4 Pack 4 .
Waeh B — P Latch delay for 1 piece of data = 4(t + latch setup) Latch
« i ° approximate delay for 1000 pieces of data = 3t +
Wash 6 Dry 6 10 X 4000
d 1000 data =773452 = ~
Time for N initiations to complete: NT + (S5-1)T 99& up for pleces (Tf ? 4 =1003 4
Throughput: Time per initiation = T + (S-1)T/N > T! Ideal speedup = # of pipeline stages
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The “new look” dataflow Another way to look at it...

! Clock Number
ID/EX EX/MIJ MEM/WB Inst. # 1 2 3 4 5 6 7 8
Inst. i IF ID EX MEM wB
Inst. i+l IF Id EX MEM wB
Branch
Comp—zren Inst. is2 IF D EX MEM | wB
Inst. i+3 IF ID EX MEM wB
Inst. LUVI @
oy 2 "
Memory Regiar - g “ [] Reg  Reg m’
Hile £ |1
E
2
Data must be M £
stored from one u b 1 7| Res
stage to the next - 3 i
in pipeline 2
registers/latches. 2 Res
hold temporary S:’ i 1 L
values between E H
clocks and needed €
info. for §\ 7| Reg
execution. & O
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So, what about the details?

* In each cycle, new instruction fetched and begins 5
cycle execution

* In perfect world (pipeline) performance improved 5
times over!

* Must know what's going on in every cycle of machine
+ What if 2 instructions need same resource at same time?
- (LOTS more on this later)

- Separate instruction/data memories, multiple register ports, etc.
help avoid this

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 15

Let's look at some examples:
- Specifically:
- (1 instruction sequence -- with a problem)
- (2 instruction sequence)

University of Notre Dame, Department of Computer Science & Engineering
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Limits, limits, limits...
+ So, now that the ideal stuff is out of the way, let's
look at how a pipeline REALLY works...

- Pipelines are slowed b/c of:
- Pipeline latency
- Imbalance of pipeline stages
* (Think: A chain is only as strong as its weakest link)
- Well, a pipeline is only as fast as its slowest stage
- Pipeline overhead (from where?)
* Register delay from pipe stage latches

- Clock skew:

- Once a clock cycle is as small as the sum of the clock skew and
latch overhead, you can't get any work done...

University of Notre Dame, Department of Computer Science & Engineering
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Executing Instructions in Pipelined Datapath

* Following charts describe 3 scenarios:

- Processing of load word (lw) instruction
* Bug included in design (make SURE you understand the bug)

- Processing of Iw
+ Bug corrected (make SURE you understand the fix)

- Processing of Iw followed in pipeline by sub

* (Sets the stage for discussion of HAZARDS and inter-
instruction dependencies)

University of Notre Dame, Department of Computer Science & Engineering
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Load word: Cycle 1 Load Word: Cycle 2

1w 1w
Instruction decode

*—Trstructionfereh 1
Note: purple in a latch indicates
data from that instruction stored there

TOEX EX/MEM MEWWB TFD TOEX EX/MEM MEWWB
Shift Add Shift Add
left2 left2
Read
reg 1 Read
- dd
Read Read address
gz datal | Read Read
Zero Magar o Zero Nadd Lo
Write Read ) data [ Instruction i data 1)
reg data2 || M) (AL Write M) (AL Wiite
i u > addr Memory u > addr
Write X x
data  Registe " "
—* gisters Wite Write
| data Data | data Data
Memory Memory
Sign
extend — —
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Load Word: Cycle 3 Load Word: Cycle 4

1w 1w
Execution Memory

TFD TOEX MEWWB TFD TOEX
Shitt
left2
Read Read
Read reg 1 Read reg 1
- address Read - address Read
Read a Read a
reg2  datal | Read g2 datal |
adar
g Write Read F:fa': Ll g Write Read
Instruction reg data2 |—»] Wiite at Instruction reg data2 | M
Memory ) addr Memory ) u
Write Write x
| 4318 Registers Write | 92 Registers
data 002
@R Memory
Sign Sign
extend extend —
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Load Word: Cycle 5

1w
Write
k)
Where’s the bug? back
D THEX EXIVEM MEWWE
Shift Add
left2
Fead
[N e ™)
Instruction M) (A wie @[]
Memory u ™ addr
x
Wite
™ data Mg:::arv
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A 2 instruction sequence

+ Examine multiple-cycle & single-cycle diagrams for a
sequence of 2 independent instructions
- (i.e. no common registers b/t them)
-lw  $10, 9($1)
-sub $11, $2, $3

Time (clock cycles)

Program
execution
order cC1 CcC2 CC3 CC4 CC5 CCé
(instructions)

1w $10, 9($1)

sub $11, $2, $3
v

newest instruction at bottom

University of Notre Dame, Department of Computer Science & Engineering
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. .
Load Word: Fixed Bug
Bug: source for Write Reg is invalid
Solution: Need to preserve register number for write-back
additional pipeline bits for write register address
IF/ID \\\ IDEX EXIMEH MEWWB
ift Add
lef
Read
Zero > addr
. Read | |
e
N N
University of Notre Dame, Department of Computer Science & Engineering
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Single-cycle diagrams: cycle 1

1w $10,9($1)

Instruction fetch

2

|

|

|

|

|

|
TOEX EX/MEM MEM/WB
— L i

Shift Add
left2
p[Read
reg 1
Read Read
b rege  datall ») Read
Zero P addr
Write Read Read Lyl
|y reg data2 || > M) (AW Wite
u addr
Write x
—p{ 98 Registers Wite  poe
data Memory
Sign
extend —
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Single-cycle diagrams: cycle 2 Single-cycle diagrams: cycle 3

 sub $11,$2,$3 1w $10,9(51)

Instruction fetch

Instruction decode ':

L, Sub $11,82,83 lw $10,9($1) ,
. [ Instruction decode ': Execution
|
|
|
|
|

|
I
|
I
|
I
TOEX EX/MEM MEM/WB
i i

Shift Add
left2
Read
- address
2 N Read
ero
addr Read N
» W) (AL wite %@ Instruction
u addr Memory
x
Write
Data
4 yemory
@_’ _
_,_—| don’t need sign __—|
| T T T extend, but don’t i
I ! ! ! know this yet | |
1 . \ ] \
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Single-cycle diagrams: cycle 4 Single-cycle diagrams: cycle 5
L Sub $11,$2,83 1w $10,9(51) sub $11,... 1lw. .
. , - f—Wemory —1*write -

»

Execution A Memory g
|

|

|

|

|

|

|
[
|
[
|
[
1FIID 23

— —

MEMWB

TFIID THEX

Read

—
Read reg 1
= address Read Read

> reg 2 data 1 |t

™ Write Read ™

Instruction [yl reg data2 [ ,
Memory Memory
Write
>

data  Registers

_(sign
P\ extend

] T T
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Single-cycle diagrams: cycle 6
b.

E
1§ ------
\—%‘ .

What about control signals?

‘Shift
left2

Read
[N Zero P addr Read
a
-
M) (A Write data
Memory u adar
x
Write Data
dala pomory
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Questions about control signals Passing control w/pipe registers

Following discussion relevant to a single instruction - Andlogy: send instruction with car on assembly line

- “Install Corinthian leather interior on car 6 @ stage 3"

strip off signals for

* Q: Are all control signals active at the same time? execution phase
- A2 wg st amarer
§ | conral 5 w we et
* Q: Can we generate all these signals at the same 2| \tion - i
. B < j wB
time? 2 _ﬂj e _ﬂ
. A_ 2 RegDst Branch MemtoReg
e ALUOp MemRead RegWrite
ALUSrc MemWrite
TF/ID ID/EX EX/MEM MEM/WB

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering
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Pipelined datapath w/control signals

[ PCSrC

IDEX
/\T’ﬁ‘—| EX/MEM
» A ;T e | [wel MEWWB
g gz 8
) ” ” & 5| § $
@ T Hazards
L — ) left2
Read reg 1 S
- address Read 4
—»| Zzag data1 [—p| ») Read
Zero P addr
™ Write Read Read
Instruction |l reg data2 |—pf m ALy Write deta [
Memory Wiite : addr
_,da'a Registers ‘ Wite oo
T dala  yemory
Inst[15-0] ‘@” /ALY
P extend P\ control
Inst[20-16]
Inst[15-11] x —‘
University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering
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On the board... The hazards of pipelining
+ Let's look at hazards... * Pipeline hazards prevent next instruction from
- ..and how they (generally) impact performance. executing during designated clock cycle

* There are 3 classes of hazards:
- Structural Hazards:
+ Arise from resource conflicts
* HW cannot support all possible combinations of instructions
- Data Hazards:

* Occur when given instruction depends on data from an
instruction ahead of it in pipeline

- Control Hazards:

+ Result from branch, other instructions that change flow of
program (i.e. change PC)

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering
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How do we deal with hazards?

* A note on terminology:

- If we say an instruction was “issued later than
instruction x”, we mean that it was issued after
instruction x and is not as far along in the pipeline

- If we say an instruction was “issued earlier than
instruction x”, we mean that it was issued before
instruction x and is further along in the pipeline

University of Notre Dame, Department of Computer Science & Engineering

Even more pipeline performance issues!

Clock cycleunpipelined

« This results in:  Clock cycle pipelined =
Pipeline depth

- Which leads to: Pipeline depth = Clock cycleunpipelined

Clock cycle pipelined

1 « Clock cycleunpipelined

Speedup from pipelining =
peedup from pip € 1+ Pipeline stall cycles per instruction  Clock cycle pipelined

1

1+ Pipeline stall cycles per instruction

x Pipeline depth

* If no stalls, speedup equal to # of pipeline stages in
ideal case

University of Notre Dame, Department of Computer Science & Engineering
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Stalls and performance

- Stalls impede progress of a pipeline and result in
deviation from 1 instruction executing/clock cycle
* Pipelining can be viewed to:
- Decrease CPTI or clock cycle time for instruction
- Let's see what affect stalls have on CPI..
* CPI pipelined =
- Ideal CPI + Pipeline stall cycles per instruction

- 1 + Pipeline stall cycles per instruction

+ Ignoring overhead and assuming stages are balanced:

CPI unpipelined

Speedup =
P P 1+ pipeline stall cycles per instruction

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 40

Structural hazards

1 way to avoid structural hazards is to duplicate
resources

- i.e.: An ALU to perform an arithmetic operation and
an adder to increment PC

+ If not all possible combinations of instructions can be
executed, structural hazards occur

* Most common instances of structural hazards:
- When a functional unit not fully pipelined
- When some resource not duplicated enough

University of Notre Dame, Department of Computer Science & Engineering
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An example of a structural hazard How is it resolved?

Load M ‘EE: “D ! Load M‘EH: Isl ‘\ﬂ"‘ Reg

L]
. M s Instruction 1 M»EH:;%]ET Reg
Instruction 1 ] 1 71 Reg
Instruction 2 Tﬂ Instruction 2 M‘EH:TE‘T Reg
g - |

g
&

il 4
B
Instruction 3 M“EH: s ‘\!7 Reg
5 BB 3

'/ Time Pipeline generally stalled by
Time  What's the problem here? inserting a “bubble"” or NOP

Instruction 3

Instruction 4

N1 [
HaE
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Or alternatively... On the board...
Clock Number + Let's see how structural hazards can impact
Inst. # | 1 2 3 4 5 6 7 8 9 10 performance.
LOAD IF I EX MEM wWB
Inst. i+l IF D EX MEM wB
Inst. i+2 IF ID EX MEM wB
Inst. i+3 stall IF ID EX MEM we
Inst. i+4 IF I EX MEM wB
Inst. i+5 IF D EX MEM
Inst. i+6 IF ID EX
+ LOAD instruction "steals” an instruction fetch cycle
which will cause the pipeline to stall.
* Thus, no instruction completes on clock cycle 8

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering
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A simple example

+ The facts:
- Data references constitute 40% of an instruction mix
- Ideal CPI of the pipelined machine is 1

- A machine with a structural hazard has a clock rate
that's 1.05 times higher than a machine without the
hazard.

* Recall: Avg. Inst. Time = CPI x Clock Cycle Time
-=(1 +0.4 x 1) x (Clock cycle timeg,,,/1.05)

- = 1.3 x Clock cycle time,,,,
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What's the realistic solution?

- Answer: Add more hardware.

- As we'll see, CPI degrades quickly from our ideal ‘1’
for even the simplest of cases...

University of Notre Dame, Department of Computer Science & Engineering
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Remember the common case!

« All things being equal, a machine without structural
hazards will always have a lower CPI.

* But, in some cases it may be better to allow them
than to eliminate them.

* These are situations a computer architect might have
to consider:

- Is pipelining functional units or duplicating them costly
in terms of HW?

- Does structural hazard occur often?

University of Notre Dame, Department of Computer Science & Engineering



