CSE 30321 - Lecture 19 - Pipelining (Part 1) 1

Lecture 19
Introduction to Pipelining

University of Notre Dame, Department of Computer Science & Engineering

Example: We have to build x cars...
...Each car takes 6 steps to build...

Build the frame Build the body Install interior
(~1 hour) (~1.25 hours) (~1.25 hours)

B

Put on axles, wheels Roll out
(~1 hour) (~1 hours)
R e

e Y

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 2
Basic pipelining
* basic := single, in-order issue
- single issue
- one instruction at a time (per stage)

- in-order issue
- instructions (start to) execute in order

- next unit: multiple issue
- unit after that: out-of-order issue
- pipelining principles
- tradeoff: clock rate vs. IPC
- hazards: structural, data, control
- vanilla pipeline: single-cycle operations
- structural hazards, RAW hazards, control hazards
- dealing with multi-cycle operations
- more structural hazards, WAW hazards, precise state

(A better way)

and the next
way will be

better and so
on and so on!

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1)

Sequential Car Building...

Build the frame Build the body Install interior Put on axles, wheels Paint
(~ 1 hour) (~1.25 hours) (~1.25 hours) (~1 hour) (~15 hours) Roll out (~1 hours)
—

7 Hours.
Pipelined Car Building... (-1 hour/stage)
i I (e —

SO T
m 4
s lN\e

Total time:

1 car done ~ every 1.5

hours
(~1 hour/stage)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 5

Pipelining Lessons (laundry example)

* Multiple tasks operating

imultaneously
6 PM simu
\ 7 8 J * Pipelining doesn't help

Time latency of single task, it

| | | | || helps throughput of
entire workload

* Pipeline rate limited by
slowest pipeline stage

~un o o

EIIE’I . * Potential speedup =
@ . E 7 Number pipe stages
* Unbalanced lengths of

pipe stages reduces
speedup

S 0 a0

+ Also, need time to “fill”
and “drain” the pipeline.

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 7

On the board...

+ The "math” behind pipelining...

University of Notre Dame, Department of Computer Science & Engineering

Pipelining: Some terms

+ If you're doing laundry or implementing a uP, each
stage where something is done called a

- In laundry example, washer, dryer, and folding table
are pipe stages; clothes enter at one end, exit other

is how often stuff comes out of a pipeline

University of Notre Dame, Department of Computer Science & Engineering

More technical detail

- If times for all S stages are equal to T:
- Time for one initiation to complete still ST
- Time between 2 initiates = T not ST
- Initiations per second = 1/T

- Pipelining: Overlap multiple executions of same
sequence

- Improves THROUGHPUT, not the time to perform a
single operation

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 9 CSE 30321 - Lecture 19 - Pipelining (Part 1) 10

More technical detail How much (ideal) speedup?
+ Book's approach to draw pipeline timing diagrams... o
Unpipelined
- Time runs left-to-right, in units of stage time
- Each "row” below corr‘esponds to distinct initiation combinational combinational combinational combinational
logic — logic —> logic — logic
- Boundary b/t 2 column entries: pipeline register delay = © delay = v delay = delay =
* (i.e. hamper) Latch delay for 1 piece of data = 4t + latch setup (assume small) Latch

_ . . approximate delay for 1000 pieces of data = 4000t

Look at columns to see what stage is doing what Pielined
0 1 2 3 4 5 6

Wash 1 Dry 1 Fold 1 Pack 1 combinational combinational combinational combinational

Wash 2 Dry 2 Fold 2 Pack 2 logic nd logic > logic logic
Wash 3 bry 3 Fold 3 Pack 3 delay = delay = delay = delay = <
Wash 4 Dry 4 Fold 4 Pack 4 .
Waeh B — P Latch delay for 1 piece of data = 4(t + latch setup) Latch
« i ° approximate delay for 1000 pieces of data = 3t +
Wash 6 Dry 6 10 X 4000
d 1000 data =773452 = ~
Time for N initiations to complete: NT + (S5-1)T 99& up for pleces (Tf ? 4 =1003 4
Throughput: Time per initiation = T + (S-1)T/N > T! Ideal speedup = # of pipeline stages

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 11 CSE 30321 - Lecture 19 - Pipelining (Part 1) 12

The “new look” dataflow Another way to look at it...

! Clock Number
ID/EX EX/MIJ MEM/WB Inst. # 1 2 3 4 5 6 7 8
Inst. i IF ID EX MEM wB
Inst. i+l IF Id EX MEM wB
Branch
Comp—zren Inst. is2 IF D EX MEM | wB
Inst. i+3 IF ID EX MEM wB
Inst. LUVI @
oy 2 "
Memory Regiar - g “ [] Reg Reg m’
Hile £ |1
E
2
Data must be M £
stored from one u b 1 7| Res
stage to the next - 3 i
in pipeline 2
registers/latches. 2 Res
hold temporary S:’ i 1 L
values between E H
clocks and needed €
info. for §\ 7| Reg
execution. & O

University of Notre Dame, Department of Computer Science & Engineering

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 13

So, what about the details?

* In each cycle, new instruction fetched and begins 5
cycle execution

* In perfect world (pipeline) performance improved 5
times over!

* Must know what's going on in every cycle of machine
+ What if 2 instructions need same resource at same time?
- (LOTS more on this later)

- Separate instruction/data memories, multiple register ports, etc.
help avoid this

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 15

Let's look at some examples:
- Specifically:
- (1 instruction sequence -- with a problem)
- (2 instruction sequence)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 14

Limits, limits, limits...
+ So, now that the ideal stuff is out of the way, let's
look at how a pipeline REALLY works...

- Pipelines are slowed b/c of:
- Pipeline latency
- Imbalance of pipeline stages
* (Think: A chain is only as strong as its weakest link)
- Well, a pipeline is only as fast as its slowest stage
- Pipeline overhead (from where?)
* Register delay from pipe stage latches

- Clock skew:

- Once a clock cycle is as small as the sum of the clock skew and
latch overhead, you can't get any work done...

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 16

Executing Instructions in Pipelined Datapath

* Following charts describe 3 scenarios:

- Processing of load word (lw) instruction
* Bug included in design (make SURE you understand the bug)

- Processing of Iw
+ Bug corrected (make SURE you understand the fix)

- Processing of Iw followed in pipeline by sub

* (Sets the stage for discussion of HAZARDS and inter-
instruction dependencies)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 17 CSE 30321 - Lecture 19 - Pipelining (Part 1) 18

Load word: Cycle 1 Load Word: Cycle 2

1w 1w
Instruction decode

*—Trstructionfereh 1
Note: purple in a latch indicates
data from that instruction stored there

TOEX EX/MEM MEWWB TFD TOEX EX/MEM MEWWB
Shift Add Shift Add
left2 left2
Read
reg 1 Read
- dd
Read Read address
gz datal | Read Read
Zero Magar o Zero Nadd Lo
Write Read) data [Instruction i data 1)
reg data2 || M) (AL Write M) (AL Wiite
i u > addr Memory u > addr
Write X x
data Registe " "
—* gisters Wite Write
| data Data | data Data
Memory Memory
Sign
extend — —

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 19 CSE 30321 - Lecture 19 - Pipelining (Part 1) 20

Load Word: Cycle 3 Load Word: Cycle 4

1w 1w
Execution Memory

TFD TOEX MEWWB TFD TOEX
Shitt
left2
Read Read
Read reg 1 Read reg 1
- address Read - address Read
Read a Read a
reg2 datal | Read g2 datal |
adar
g Write Read F:fa': Ll g Write Read
Instruction reg data2 |—»] Wiite at Instruction reg data2 | M
Memory) addr Memory) u
Write Write x
| 4318 Registers Write | 92 Registers
data 002
@R Memory
Sign Sign
extend extend —

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 21

Load Word: Cycle 5

1w
Write
k)
Where’s the bug? back
D THEX EXIVEM MEWWE
Shift Add
left2
Fead
[N e ™)
Instruction M) (A wie @[]
Memory u ™ addr
x
Wite
™ data Mg:::arv

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 23

A 2 instruction sequence

+ Examine multiple-cycle & single-cycle diagrams for a
sequence of 2 independent instructions
- (i.e. no common registers b/t them)
-lw $10, 9($1)
-sub $11, $2, $3

Time (clock cycles)

Program
execution
order cC1 CcC2 CC3 CC4 CC5 CCé
(instructions)

1w $10, 9($1)

sub $11, $2, $3
v

newest instruction at bottom

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 22
. .
Load Word: Fixed Bug
Bug: source for Write Reg is invalid
Solution: Need to preserve register number for write-back
additional pipeline bits for write register address
IF/ID \\\ IDEX EXIMEH MEWWB
ift Add
lef
Read
Zero > addr
. Read | |
e
N N
University of Notre Dame, Department of Computer Science & Engineering
CSE 30321 - Lecture 19 - Pipelining (Part 1) 24

Single-cycle diagrams: cycle 1

1w $10,9($1)

Instruction fetch

2

|

|

|

|

|

|
TOEX EX/MEM MEM/WB
— L i

Shift Add
left2
p[Read
reg 1
Read Read
b rege datall ») Read
Zero P addr
Write Read Read Lyl
|y reg data2 || > M) (AW Wite
u addr
Write x
—p{ 98 Registers Wite poe
data Memory
Sign
extend —

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 25 CSE 30321 - Lecture 19 - Pipelining (Part 1)

Single-cycle diagrams: cycle 2 Single-cycle diagrams: cycle 3

 sub $11,$2,$3 1w $10,9(51)

Instruction fetch

Instruction decode ':

L, Sub $11,82,83 lw $10,9($1) ,
. [Instruction decode ': Execution
|
|
|
|
|

|
I
|
I
|
I
TOEX EX/MEM MEM/WB
i i

Shift Add
left2
Read
- address
2 N Read
ero
addr Read N
» W) (AL wite %@ Instruction
u addr Memory
x
Write
Data
4 yemory
@_’ _
,—| don’t need sign __—|
| T T T extend, but don’t i
I ! ! ! know this yet | |
1 . \] \

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 27 CSE 30321 - Lecture 19 - Pipelining (Part 1)

Single-cycle diagrams: cycle 4 Single-cycle diagrams: cycle 5
L Sub $11,$2,83 1w $10,9(51) sub $11,... 1lw. .
. , - f—Wemory —1*write -

»

Execution A Memory g
|

|

|

|

|

|

|
[
|
[
|
[
1FIID 23

— —

MEMWB

TFIID THEX

Read

—
Read reg 1
= address Read Read

> reg 2 data 1 |t

™ Write Read ™

Instruction [yl reg data2 [,
Memory Memory
Write
>

data Registers

_(sign
P\ extend

] T T

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 29 CSE 30321 - Lecture 19 - Pipelining (Part 1) 30
Single-cycle diagrams: cycle 6
b.

E
1§ ------
\—%‘ .

What about control signals?

‘Shift
left2

Read
[N Zero P addr Read
a
-
M) (A Write data
Memory u adar
x
Write Data
dala pomory

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 31
Questions about control signals Passing control w/pipe registers

Following discussion relevant to a single instruction - Andlogy: send instruction with car on assembly line

- “Install Corinthian leather interior on car 6 @ stage 3"

strip off signals for

* Q: Are all control signals active at the same time? execution phase
- A2 wg st amarer
§ | conral 5 w we et
* Q: Can we generate all these signals at the same 2| \tion - i
. B < j wB
time? 2 _ﬂj e _ﬂ
. A_ 2 RegDst Branch MemtoReg
e ALUOp MemRead RegWrite
ALUSrc MemWrite
TF/ID ID/EX EX/MEM MEM/WB

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 33 CSE 30321 - Lecture 19 - Pipelining (Part 1) 34

Pipelined datapath w/control signals

[PCSrC

IDEX
/\T’ﬁ‘—| EX/MEM
» A ;T e | [wel MEWWB
g gz 8
) ” ” & 5| § $
@ T Hazards
L —) left2
Read reg 1 S
- address Read 4
—»| Zzag data1 [—p| ») Read
Zero P addr
™ Write Read Read
Instruction |l reg data2 |—pf m ALy Write deta [
Memory Wiite : addr
_,da'a Registers ‘ Wite oo
T dala yemory
Inst[15-0] ‘@” /ALY
P extend P\ control
Inst[20-16]
Inst[15-11] x —‘
University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering
CoE 30521 Lechre 15 Ppeining (ot 1 35
On the board... The hazards of pipelining
+ Let's look at hazards... * Pipeline hazards prevent next instruction from
- ..and how they (generally) impact performance. executing during designated clock cycle

* There are 3 classes of hazards:
- Structural Hazards:
+ Arise from resource conflicts
* HW cannot support all possible combinations of instructions
- Data Hazards:

* Occur when given instruction depends on data from an
instruction ahead of it in pipeline

- Control Hazards:

+ Result from branch, other instructions that change flow of
program (i.e. change PC)

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 37

How do we deal with hazards?

* A note on terminology:

- If we say an instruction was “issued later than
instruction x”, we mean that it was issued after
instruction x and is not as far along in the pipeline

- If we say an instruction was “issued earlier than
instruction x”, we mean that it was issued before
instruction x and is further along in the pipeline

University of Notre Dame, Department of Computer Science & Engineering

Even more pipeline performance issues!

Clock cycleunpipelined

« This results in: Clock cycle pipelined =
Pipeline depth

- Which leads to: Pipeline depth = Clock cycleunpipelined

Clock cycle pipelined

1 « Clock cycleunpipelined

Speedup from pipelining =
peedup from pip € 1+ Pipeline stall cycles per instruction Clock cycle pipelined

1

1+ Pipeline stall cycles per instruction

x Pipeline depth

* If no stalls, speedup equal to # of pipeline stages in
ideal case

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 38

Stalls and performance

- Stalls impede progress of a pipeline and result in
deviation from 1 instruction executing/clock cycle
* Pipelining can be viewed to:
- Decrease CPTI or clock cycle time for instruction
- Let's see what affect stalls have on CPI..
* CPI pipelined =
- Ideal CPI + Pipeline stall cycles per instruction

- 1 + Pipeline stall cycles per instruction

+ Ignoring overhead and assuming stages are balanced:

CPI unpipelined

Speedup =
P P 1+ pipeline stall cycles per instruction

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 40

Structural hazards

1 way to avoid structural hazards is to duplicate
resources

- i.e.: An ALU to perform an arithmetic operation and
an adder to increment PC

+ If not all possible combinations of instructions can be
executed, structural hazards occur

* Most common instances of structural hazards:
- When a functional unit not fully pipelined
- When some resource not duplicated enough

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 41 CSE 30321 - Lecture 19 - Pipelining (Part 1) 42

An example of a structural hazard How is it resolved?

Load M ‘EE: “D ! Load M‘EH: Isl ‘\ﬂ"‘ Reg

L]
. M s Instruction 1 M»EH:;%]ET Reg
Instruction 1] 1 71 Reg
Instruction 2 Tﬂ Instruction 2 M‘EH:TE‘T Reg
g - |

g
&

il 4
B
Instruction 3 M“EH: s ‘\!7 Reg
5 BB 3

'/ Time Pipeline generally stalled by
Time What's the problem here? inserting a “bubble"” or NOP

Instruction 3

Instruction 4

N1 [
HaE

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 43 CSE 30321 - Lecture 19 - Pipelining (Part 1) 44
Or alternatively... On the board...
Clock Number + Let's see how structural hazards can impact
Inst. # | 1 2 3 4 5 6 7 8 9 10 performance.
LOAD IF I EX MEM wWB
Inst. i+l IF D EX MEM wB
Inst. i+2 IF ID EX MEM wB
Inst. i+3 stall IF ID EX MEM we
Inst. i+4 IF I EX MEM wB
Inst. i+5 IF D EX MEM
Inst. i+6 IF ID EX
+ LOAD instruction "steals” an instruction fetch cycle
which will cause the pipeline to stall.
* Thus, no instruction completes on clock cycle 8

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 45

A simple example

+ The facts:
- Data references constitute 40% of an instruction mix
- Ideal CPI of the pipelined machine is 1

- A machine with a structural hazard has a clock rate
that's 1.05 times higher than a machine without the
hazard.

* Recall: Avg. Inst. Time = CPI x Clock Cycle Time
-=(1 +0.4 x 1) x (Clock cycle timeg,,,/1.05)

- = 1.3 x Clock cycle time,,,,

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 47

What's the realistic solution?

- Answer: Add more hardware.

- As we'll see, CPI degrades quickly from our ideal ‘1’
for even the simplest of cases...

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 46

Remember the common case!

« All things being equal, a machine without structural
hazards will always have a lower CPI.

* But, in some cases it may be better to allow them
than to eliminate them.

* These are situations a computer architect might have
to consider:

- Is pipelining functional units or duplicating them costly
in terms of HW?

- Does structural hazard occur often?

University of Notre Dame, Department of Computer Science & Engineering

