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Lecture 19
Introduction to Pipelining
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Basic pipelining
• basic := single, in-order issue 

– single issue
• one instruction at a time (per stage) 

– in-order issue
• instructions (start to) execute in order 

– next unit: multiple issue 
– unit after that: out-of-order issue 

• pipelining principles 
– tradeoff: clock rate vs. IPC 
– hazards: structural, data, control 

• vanilla pipeline: single-cycle operations 
– structural hazards, RAW hazards, control hazards 

• dealing with multi-cycle operations 
– more structural hazards, WAW hazards, precise state
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(A better way)
...

and the next 
way will be 

better and so 
on and so on!
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Example:  We have to build x cars...

...Each car takes 6 steps to build...

Build the frame

(~1 hour)

Build the body

(~1.25 hours)

Install interior

(~1.25 hours)

Put on axles, wheels

(~1 hour)

Paint

(~1.5 hours)

Roll out

(~1 hours)
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Sequential Car Building...
Build the frame

(~ 1 hour)

Build the body

(~1.25 hours)

Install interior

(~1.25 hours)
Put on axles, wheels

(~1 hour)
Paint

(~1.5 hours)
Roll out (~1 hours)

Total time:  7 Hours.
(~1 hour/stage)Pipelined Car Building...

1 car done ~ every 1.5 
hours

(~1 hour/stage)
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Pipelining Lessons (laundry example)

• Multiple tasks operating 
simultaneously

• Pipelining doesn’t help 
latency of single task, it 
helps throughput of 
entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Potential speedup = 
Number pipe stages

• Unbalanced lengths of 
pipe stages reduces 
speedup

• Also, need time to “fill” 
and “drain” the pipeline.
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Pipelining:  Some terms
• If you’re doing laundry or implementing a µP, each 

stage where something is done called a pipe stage

– In laundry example, washer, dryer, and folding table 
are pipe stages; clothes enter at one end, exit other

– In a µP, instructions enter at one end and have been 

executed when they leave

• Throughput is how often stuff comes out of a pipeline

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 7

On the board…
• The “math” behind pipelining…
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More technical detail
• If times for all S stages are equal to T:

– Time for one initiation to complete still ST

– Time between 2 initiates = T not ST

– Initiations per second = 1/T

• Pipelining:  Overlap multiple executions of same 

sequence

– Improves THROUGHPUT, not the time to perform a 
single operation
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More technical detail
• Book’s approach to draw pipeline timing diagrams…

– Time runs left-to-right, in units of stage time

– Each “row” below corresponds to distinct initiation

– Boundary b/t 2 column entries:  pipeline register 

• (i.e. hamper)

– Look at columns to see what stage is doing what

0 1 2 3 4 5 6

Wash 1 Dry 1 Fold 1 Pack 1

Wash 2 Dry 2 Fold 2 Pack 2

Wash 3 Dry 3 Fold 3 Pack 3

Wash 4 Dry 4 Fold 4 Pack 4

Wash 5 Dry 5 Fold 5

Wash 6 Dry 6

Time for N initiations to complete:  NT + (S-1)T
Throughput:  Time per initiation = T + (S-1)T/N ! T!
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How much (ideal) speedup?

Latch

combinational

logic 

delay = !

combinational

logic 

delay = !

combinational

logic 

delay = !

combinational

logic 

delay = !

Unpipelined

Latch
delay for 1 piece of data = 4! + latch setup (assume small)

approximate delay for 1000 pieces of data = 4000!

Latch

combinational

logic 

delay = !

combinational

logic 

delay = !

combinational

logic 

delay = !

combinational

logic 

delay = !

Pipelined

Latchdelay for 1 piece of data = 4(! + latch setup)
approximate delay for 1000 pieces of data = 3! + 
1000!

Ideal speedup = # of pipeline stages

speedup for 1000 pieces of data =         4000
= ~ 41003
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The “new look” dataflow
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Another way to look at it…

Inst. # 1 2 3 4 5 6 7 8

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 IF ID EX MEM WB

Clock Number
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So, what about the details?
• In each cycle, new instruction fetched and begins 5 

cycle execution

• In perfect world (pipeline) performance improved 5 

times over!

• Now, let’s talk about overhead… 

– (i.e. what else do we have to worry about?)

• Must know what’s going on in every cycle of machine

• What if 2 instructions need same resource at same time?  

– (LOTS more on this later)

– Separate instruction/data memories, multiple register ports, etc. 

help avoid this
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Limits, limits, limits…
• So, now that the ideal stuff is out of the way, let’s 

look at how a pipeline REALLY works…

• Pipelines are slowed b/c of:

– Pipeline latency

– Imbalance of pipeline stages

• (Think:  A chain is only as strong as its weakest link)

• Well, a pipeline is only as fast as its slowest stage

– Pipeline overhead (from where?)

• Register delay from pipe stage latches

• Clock skew:

– Once a clock cycle is as small as the sum of the clock skew and 

latch overhead, you can’t get any work done…
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Let’s look at some examples:
• Specifically:

– (1 instruction sequence -- with a problem)

– (2 instruction sequence)
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Executing Instructions in Pipelined Datapath
• Following charts describe 3 scenarios:

– Processing of load word (lw) instruction

• Bug included in design (make SURE you understand the bug)

– Processing of lw

• Bug corrected (make SURE you understand the fix)

– Processing of lw followed in pipeline by sub

• (Sets the stage for discussion of HAZARDS and inter-
instruction dependencies)
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Load word:  Cycle 1
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Load Word:  Cycle 2
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Load Word:  Cycle 3
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Load Word:  Cycle 4
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Load Word:  Cycle 5
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Load Word:  Fixed Bug
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A 2 instruction sequence

• Examine multiple-cycle & single-cycle diagrams for a 

sequence of 2 independent instructions

– (i.e. no common registers b/t them)

• lw $10, 9($1)

• sub $11, $2, $3
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Single-cycle diagrams:  cycle 1
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Single-cycle diagrams:  cycle 2
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Single-cycle diagrams:  cycle 3
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Single-cycle diagrams:  cycle 4
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Single-cycle diagrams:  cycle 5
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Single-cycle diagrams:  cycle 6
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What about control signals?
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Questions about control signals
• Following discussion relevant to a single instruction

• Q:  Are all control signals active at the same time?

• A: ?

• Q:  Can we generate all these signals at the same 

time?

• A: ?
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Passing control w/pipe registers
• Analogy:  send instruction with car on assembly line

– “Install Corinthian leather interior on car 6 @ stage 3”
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Pipelined datapath w/control signals
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Hazards
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On the board…
• Let’s look at hazards…

– …and how they (generally) impact performance.
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The hazards of pipelining
• Pipeline hazards prevent next instruction from 

executing during designated clock cycle

• There are 3 classes of hazards:

– Structural Hazards:

• Arise from resource conflicts 

• HW cannot support all possible combinations of instructions

– Data Hazards:

• Occur when given instruction depends on data from an 
instruction ahead of it in pipeline

– Control Hazards:

• Result from branch, other instructions that change flow of 
program (i.e. change PC)
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How do we deal with hazards?
• Often, pipeline must be stalled

• Stalling pipeline usually lets some instruction(s) in 

pipeline proceed, another/others wait for data, 

resource, etc.

• A note on terminology:

– If we say an instruction was “issued later than 
instruction x”, we mean that it was issued after 
instruction x and is not as far along in the pipeline

– If we say an instruction was “issued earlier than 
instruction x”, we mean that it was issued before 
instruction x and is further along in the pipeline
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Stalls and performance
• Stalls impede progress of a pipeline and result in 

deviation from 1 instruction executing/clock cycle

• Pipelining can be viewed to:

– Decrease CPI or clock cycle time for instruction

– Let’s see what affect stalls have on CPI…

• CPI pipelined =

– Ideal CPI + Pipeline stall cycles per instruction

– 1 + Pipeline stall cycles per instruction

• Ignoring overhead and assuming stages are balanced:
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Even more pipeline performance issues!
• This results in:

• Which leads to:

• If no stalls, speedup equal to # of pipeline stages in 

ideal case
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Structural hazards
• 1 way to avoid structural hazards is to duplicate 

resources

– i.e.:  An ALU to perform an arithmetic operation and 
an adder to increment PC

• If not all possible combinations of instructions can be 

executed, structural hazards occur

• Most common instances of structural hazards:

– When a functional unit not fully pipelined

– When some resource not duplicated enough
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An example of a structural hazard
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What’s the problem here?
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How is it resolved?

Time

A
LURegMem

D
M

Reg

Load

Instruction 1

Instruction 2

Stall

Instruction 3

Bubble Bubble Bubble Bubble Bubble

Pipeline generally stalled by 

inserting a “bubble” or NOP
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A
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A
LURegMem DM Reg
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Or alternatively…

Inst. # 1 2 3 4 5 6 7 8 9 10

LOAD IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 stall IF ID EX MEM WB

Inst. i+4 IF ID EX MEM WB

Inst. i+5 IF ID EX MEM

Inst. i+6 IF ID EX

Clock Number

• LOAD instruction “steals” an instruction fetch cycle 

which will cause the pipeline to stall.

• Thus, no instruction completes on clock cycle 8
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On the board…
• Let’s see how structural hazards can impact 

performance.
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A simple example
• The facts:

– Data references constitute 40% of an instruction mix

– Ideal CPI of the pipelined machine is 1

– A machine with a structural hazard has a clock rate 
that’s 1.05 times higher than a machine without the 
hazard.

• How much does this LOAD problem hurt us?

• Recall:  Avg. Inst. Time = CPI x Clock Cycle Time

– = (1 + 0.4 x 1) x (Clock cycle timeideal/1.05)

– = 1.3 x Clock cycle timeideal

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 46

Remember the common case!
• All things being equal, a machine without structural 

hazards will always have a lower CPI.

• But, in some cases it may be better to allow them 

than to eliminate them.

• These are situations a computer architect might have 

to consider:

– Is pipelining functional units or duplicating them costly 
in terms of HW?

– Does structural hazard occur often?
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What’s the realistic solution?
• Answer:  Add more hardware.

– As we’ll see, CPI degrades quickly from our ideal ‘1’ 
for even the simplest of cases…


